然后就是怎么做的问题。, 其次,降压药的种类繁多,每种药物的特点和作用机制都不尽相同。
"将函数F(x)=1/(3+x)展开成的x的幂级数,并求出其收敛域"
将函数F(x)=1/(3+x)展开成x的幂级数,可以使用泰勒展开公式。泰勒展开公式表示如下: f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)²/2! + f'''(a)(x-a)³/3! + ... 对于函数F(x)=1/(3+x),我们先求它的导数: F'(x) = -1/(3+x)² 然后将x=0代入得到: F(0) = 1/(3+0) = 1/3 F'(0) = -1/(3+0)² = -1/9 将上述结果代入泰勒展开公式: F(x) = F(0) + F'(0)x + F''(0)x²/2! + F'''(0)x³/3! + ... F(x) = 1/3 - 1/9x + F''(0)x²/2! + F'''(0)x³/3! + ... 我们继续求F''(x)和F'''(x)的导数: F''(x) = 2/(3+x)³ F'''(x) = -6/(3+x)⁴ 将x=0代入得到: F''(0) = 2/(3+0)³ = 2/27 F'''(0) = -6/(3+0)⁴ = -6/81 = -2/27 将上述结果代入泰勒展开公式: F(x) = 1/3 - 1/9x + 2/27x²/2! - 2/27x³/3! + ... 继续化简得: F(x) = 1/3 - 1/9x + 1/27x² - 1/81x³ + ... 我们观察到这是一个幂级数,它的收敛域可以通过比值判别法来确定。比值判别法的公式如下: R = lim(n->∞) |an/an+1| 其中an为幂级数中的一项。 对于我们的幂级数,an = (-1)ⁿ/(3ⁿ)! xⁿ 将an代入比值判别法公式: |an/an+1| = [(-1)ⁿ/n!] / [(-1)ⁿ⁺¹/(n+1)!] * x = [(n+1)!/n!] * x = (n+1) * x 当lim(n->∞) (n+1) * x < 1时,幂级数收敛;当lim(n->∞) (n+1) * x > 1时,幂级数发散。 综上所述,幂级数收敛的条件是 |x| < 1/(n+1),即收敛域为(-1, 1)。
这种相互理解和尊重的态度,让他们的家庭关系保持和谐。, 本文转自:枣庄日报 11月21日,在台儿庄区涧头集镇薛庄村,村民正在引水灌田。
“加拿大一枝黄花”在浙江遇上对手了,这种植物为何在加拿大不泛滥?
目前,总投资11亿元的辽宁华子玉农副产品加工冷藏项目,其一期主体工程已完成,冷冻设备已安装完毕,加工设备订购完成;, 此次活动,受到老人们的一致好评。